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Goals of memory management

• Allocate memory resources among competing 
processes, maximizing memory utilization and 
system throughput

• Provide memory isolation between processes
– We have come to view “addressability” and “protection” as 

inextricably linked, even though they’re really orthogonal

• Provide a convenient abstraction of memory for 
programming (and for compilers, etc.)
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Tools of memory management

• Base and limit registers

• Swapping

• Paging (and page tables and TLB’s)

• Segmentation (and segment tables)

• Page faults => page fault handling => virtual memory

• The policies that govern the use of these 
mechanisms

• We will cover all of these soon, but first a few terms 
we need to loosely define…
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Today’s server, desktop, laptop, tablet, 
and phone systems

• The basic abstraction that the OS provides for 
memory management is virtual memory (VM)
– Efficient use of hardware (real memory)

• VM enables programs to execute without requiring their entire 
address space to be resident in physical memory

• Many programs don’t need all of their code or data at once (or 
ever – branches they never take, or data they never read/write)

• No need to allocate memory for it, OS should adjust amount 
allocated based on run-time behavior

– Program flexibility
• Programs can execute on machines with less RAM than they 

“need”
– On the other hand, paging is really slow, so must be minimized!

– Protection
• Virtual memory isolates address spaces from each other
• One process cannot name addresses visible to others; each 

process has its own isolated address space
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VM requires hardware and OS support

• MMU’s (Memory Management Unit)

• TLB’s (Translation Lookaside Buffer)

• Page tables

• page fault handling, …

• Sometimes accompanied by swapping, or limited 
segmentation
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A trip down Memory Lane …

• Why?
– Because it’s instructive

– Because embedded processors (98% or more of all processors) 
typically don’t have virtual memory

– Because some aspects are pertinent to allocating portions of a 
virtual address space – e.g., malloc()

• First, there was one job-at-a-time batch programming
– programs used physical addresses directly

– OS loads job (perhaps using a relocating loader to “offset” branch 
addresses), runs it, unloads it

– what if the program wouldn’t fit into memory?
• manual overlays!

• An embedded system may have only one program!
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• Then came Swapping
– save a program’s entire state (including its memory image) 

to disk
– allows another program to be run
– first program can be swapped back in and re-started right 

where it was

– The first timesharing system, MIT’s “Compatible Time 
Sharing System” (CTSS) (circa 1961), was a uni-
programmed swapping system

• only one memory-resident user
• upon request completion or quantum expiration, a swap took 

place
• slow … but it worked!

• A later system, MULTICS (circa 1967) furthered OS 
development
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• Then came Multiprogramming
– multiple processes/jobs in memory at once

• to overlap I/O and computation between processes/jobs, easing 
the task of the application programmer

– memory management requirements:
• protection: restrict which addresses processes can use, so they 

can’t stomp on each other

• fast translation: memory lookups must be fast, in spite of the 
protection scheme

• fast context switching: when switching between jobs, updating 
memory hardware (protection and translation) must be quick
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Virtual addresses for multiprogramming

• To make it easier to manage memory of multiple 
processes, make processes use virtual addresses
– virtual addresses are independent of location in physical 

memory (RAM) where referenced data lives
• OS determines location in physical memory

– instructions issued by CPU reference virtual addresses
• e.g., pointers, arguments to load/store instructions, PC …

– virtual addresses are translated by hardware into physical 
addresses (with some setup from OS)
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• The set of virtual addresses a process can reference 
is its address space
– many different possible mechanisms for translating virtual 

addresses to physical addresses
• we’ll take a historical walk through them, ending up with our 

current techniques

• Note:  We are not yet talking about paging
– Only that the program issues addresses in a virtual address 

space, and these must be translated to reference memory 
(the physical address space)

– For now, think of the program as having a contiguous virtual 
address space that starts at 0, and a contiguous physical 
address space that starts somewhere else



Some important terms to remember

• Virtual Memory

• Virtual Address

• Address Space

• And now onto some oldish virtual memory model 
techniques…
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Old technique #1: Fixed partitions

• Physical memory is broken up into fixed partitions
– partitions may have different sizes, but partitioning never 

changes
– hardware requirement: base register, limit register

• physical address = virtual address + base register
• base register loaded by OS when it switches to a process

– how do we provide protection?
• if (physical address > base + limit) then… ?

• Advantages
– Simple

• Problems
– internal fragmentation: the available partition is larger than 

what was requested
– external fragmentation: two small partitions left, but one big 

job – what sizes should the partitions be??
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Mechanics of fixed partitions
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Old technique #2: Variable partitions

• Obvious next step: physical memory is broken up into 
partitions dynamically – partitions are tailored to programs
– hardware requirements: base register, limit register
– physical address = virtual address + base register
– how do we provide protection?

• if (physical address > base + limit) then… ?

• Advantages
– no internal fragmentation

• simply allocate partition size to be just big enough for process 
(assuming we know what that is!)

• Problems
– external fragmentation

• as we load and unload jobs, holes are left scattered throughout 
physical memory

• slightly different than the external fragmentation for fixed partition 
systems
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Mechanics of variable partitions
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Dealing with fragmentation

partition 0

partition 1

partition 2

partition 3

partition 4

• Compact memory by 
copying
– Swap a program out

– Re-load it, adjacent to 
another

– Adjust its base register

– “Lather, rinse, repeat”

– Ugh
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partition 4
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Modern technique: Paging

• Solve the external fragmentation problem by using fixed sized units 
in both physical and virtual memory

• Mitigate the internal fragmentation problem by making the units 
small

frame 0
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frame Y

physical address space
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page 0

page 1

page 2

page X

virtual address space

…

page 3
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Life is easy …

• For the programmer …
– Processes view memory as a contiguous address space 

from bytes 0 through N – a virtual address space

– N is independent of the actual hardware

– In reality, virtual pages are scattered across physical 
memory frames – not contiguous as earlier

• Virtual-to-physical mapping

• This mapping is invisible to the program

• For the memory manager …
– Efficient use of memory, because very little internal 

fragmentation

– No external fragmentation at all
• No need to copy big chunks of memory around to coalesce free 

space
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• For the protection system
– One process cannot “name” another process’s memory –

there is complete isolation
• The virtual address 0xDEADBEEF maps to different physical 

addresses for different processes

Note:  Assume for now that all pages of the address 
space are resident in memory – no “page faults”

• But how do we accomplish this translation from a 
virtual address to a physical address?
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Address translation

• To go from a virtual address to a physical address, we 
add a level of indirection called a Page Table

• Translating virtual addresses
– a virtual address has two parts: virtual page number & offset

– virtual page number (VPN) is an index into a page table

– page table entry contains page frame number (PFN)

– physical address is PFN::offset (concatenated together)

• Page tables
– managed by the OS

– one page table entry (PTE) per page in virtual address space
• i.e., one PTE per VPN

– map virtual page number (VPN) to page frame number (PFN)
• VPN is simply an index into the page table
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Paging (K-byte pages)
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Mechanics of address translation
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Example of address translation

• Assume 32 bit addresses
– assume page size is 4KB  (4096 bytes, or 212 bytes)

– VPN is 20 bits long (220 VPNs), offset is 12 bits long

• Let’s translate virtual address 0x13325328
– VPN is 0x13325, and offset is 0x328

– assume page table entry 0x13325 contains value 0x03004
• page frame number is 0x03004

• VPN 0x13325 maps to PFN 0x03004

– physical address = PFN::offset = 0x03004328
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Translating 0x13325328
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Page Table Entries – an opportunity!

• As long as there’s a PTE lookup per memory 
reference, we might as well add some functionality
– We can add protection

• A virtual page can be read-only, and result in a fault if a store to 
it is attempted

• Some pages may not map to anything – a fault will occur if a 
reference is attempted

• What other type of protection would be good?  
Maybe execute-only?

– We can add some “accounting information”
• Can’t do anything fancy, since address translation must be fast

• Can keep track of whether or not a virtual page is being used, 
though

– This will help the paging algorithm, once we get to paging
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Generic Page Table Entry (PTE)

• PTE’s control mapping (a generic/stylized version)
– the valid bit says whether or not the PTE can be used

• says whether or not a virtual address is valid

• it is checked each time a virtual address is used

– the referenced bit says whether the page has been accessed
• it is set when a page has been read or written to

– the modified bit says whether or not the page is dirty
• it is set when a write to the page has occurred

– the protection bits control which operations are allowed
• read, write, execute

– the page frame number determines the physical page
• physical page start address = PFN

page frame numberprotMRV

202111
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Paging advantages

• Easy to allocate physical memory
– physical memory is allocated from free list of frames

• to allocate a frame, just remove it from the free list

– external fragmentation is not a problem
• managing variable-sized allocations is a huge pain in the neck

– “buddy system”

• Leads naturally to virtual memory
– entire program need not be memory resident

– take page faults using “valid” bit

– all “chunks” are the same size (page size)

– but paging was originally introduced to deal with external 
fragmentation, not to allow programs to be partially resident 
(here is the subtle distinction between virtual addressing and 
virtual memory)
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Paging disadvantages

• Can still have internal fragmentation
– Process may not use memory in exact multiples of pages
– But minor because of small page size relative to address space 

size

• Memory reference overhead
– 2 references per address lookup (page table, then memory)
– Solution: use a hardware cache to absorb page table lookups

• translation lookaside buffer (TLB) – next class

• Memory required to hold page tables can be large
– need one PTE per page in virtual address space
– 32 bit AS with 4KB pages = 220 PTEs = 1,048,576 PTEs
– 4 bytes/PTE = 4MB per page table

• OS’s have separate page tables per process
• 25 processes = 100MB of page tables

– Solution: page the page tables (!!!)
• (ow, my brain hurts…more later)
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Segmentation
(We will be back to paging soon!)

• Paging
– mitigates various memory allocation complexities (e.g., 

fragmentation)

– view an address space as a linear array of bytes

– divide it into pages of equal size (e.g., 4KB)

– use a page table to map virtual pages to physical page 
frames

• page (logical) => page frame (physical)

– One problem with paging is that is not very logical (i.e., 
programmer friendly)

• Segmentation
– partition an address space into logical units

• stack, code, heap, subroutines, …

– a virtual address is <segment #, offset>
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What’s the point?

• More “logical”
– absent segmentation, a linker takes a bunch of independent 

modules that call each other and linearizes them

– they are really independent; segmentation treats them as 
such

• Facilitates sharing and reuse
– a segment is a natural unit of sharing – a subroutine or 

function

• A natural extension of variable-sized partitions
– variable-sized partition = 1 segment/process

– segmentation = many segments/process
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Hardware support

• Segment table
– multiple base/limit pairs, one per segment

– segments named by segment #, used as index into table
• a virtual address is <segment #, offset>

– offset of virtual address added to base address of segment 
to yield physical address
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Segment lookups
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Looks like a repeat of 
variable partitions with a 
small twist the base limit 

registers are now in a 
segment table
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Pros and cons

• Yes, it’s “logical” and it facilitates sharing and reuse

• But it has all the horror of a variable partition system
– except that linking is simpler, and the “chunks” that must be 

allocated are smaller than a “typical” linear address space

• What to do?
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Combining segmentation and paging
• Can combine these techniques

– modern architectures support both segments and paging

• Use segments to manage logical units
– segments vary in size, but are typically large (multiple pages)

• Use pages to partition segments into fixed-size chunks
– each segment has its own page table

• there is a page table per segment, rather than per user address 
space

– memory allocation becomes easy once again
• no contiguous allocation, no external fragmentation

Segment # Page # Offset within page

Offset within segment



How Intel combines segments and pages
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Mixing segments and pages

2/8/2026 36



37

• Linux:
– 1 kernel code segment, 1 kernel data segment

– 1 user code segment, 1 user data segment

– all of these segments are paged

• Note:  this is a very limited/boring use of segments!


