CSE 451: Operating Systems
Winter 2026

Module 11
Memory Management

Gary Kimura

Goals of memory management

* Allocate memory resources among competing

processes, maximizing memory utilization and
system throughput

 Provide memory isolation between processes

— We have come to view “addressability” and “protection” as
inextricably linked, even though they’re really orthogonal

* Provide a convenient abstraction of memory for
programming (and for compilers, etc.)

Tools of memory management

Base and limit registers

Swapping

Paging (and page tables and TLB's)

Segmentation (and segment tables)

Page faults => page fault handling => virtual memory

The policies that govern the use of these
mechanisms

We will cover all of these soon, but first a few terms
we need to loosely define...

Today’s server, desktop, laptop, tablet,

and phone systems

* The basic abstraction that the OS provides for
memory management is virtual memory (VM)
— Efficient use of hardware (real memory)

* VM enables programs to execute without requiring their entire
address space to be resident in physical memory

« Many programs don’t need all of their code or data at once (or
ever — branches they never take, or data they never read/write)

* No need to allocate memory for it, OS should adjust amount
allocated based on run-time behavior

— Program flexibility

* Programs can execute on machines with less RAM than they
“need”

— On the other hand, paging is really slow, so must be minimized!
— Protection
 Virtual memory isolates address spaces from each other

* One process cannot name addresses visible to others; each
process has its own isolated address space

VM requires hardware and OS support

MMU’s (Memory Management Unit)
TLB’s (Translation Lookaside Buffer)
Page tables

page fault handling, ...

Sometimes accompanied by swapping, or limited
segmentation

A trip down Memory Lane ...

 Why?
— Because it’s instructive

— Because embedded processors (98% or more of all processors)
typically don’t have virtual memory

— Because some aspects are pertinent to allocating portions of a
virtual address space — e.g., malloc()

« First, there was one job-at-a-time batch programming
— programs used physical addresses directly

— OS loads job (perhaps using a relocating loader to “offset” branch
addresses), runs it, unloads it

— what if the program wouldn’t fit into memory?
* manual overlays!

 An embedded system may have only one program!

 Then came Swapping

— save a program’s entire state (including its memory image)
to disk

— allows another program to be run

— first program can be swapped back in and re-started right
where it was

— The first timesharing system, MIT’s “Compatible Time
Sharing System” (CTSS) (circa 1961), was a uni-
programmed swapping system

« only one memory-resident user

» upon request completion or quantum expiration, a swap took
place

* slow ... but it worked!

« A later system, MULTICS (circa 1967) furthered OS
development

Then came Multiprogramming

— multiple processes/jobs in memory at once

 to overlap I/O and computation between processes/jobs, easing
the task of the application programmer

— memory management requirements:

 protection: restrict which addresses processes can use, so they
can’t stomp on each other

« fast translation: memory lookups must be fast, in spite of the
protection scheme

« fast context switching: when switching between jobs, updating
memory hardware (protection and translation) must be quick

Virtual addresses for multiprogramming

* To make it easier to manage memory of multiple
processes, make processes use virtual addresses

— virtual addresses are independent of location in physical
memory (RAM) where referenced data lives
* OS determines location in physical memory
— instructions issued by CPU reference virtual addresses
* e.g., pointers, arguments to load/store instructions, PC ...

— virtual addresses are translated by hardware into physical
addresses (with some setup from OS)

* The set of virtual addresses a process can reference
IS Its address space

— many different possible mechanisms for translating virtual
addresses to physical addresses

« we'll take a historical walk through them, ending up with our
current techniques

 Note: We are not yet talking about paging

— Only that the program issues addresses in a virtual address
space, and these must be translated to reference memory
(the physical address space)

— For now, think of the program as having a contiguous virtual
address space that starts at 0, and a contiguous physical
address space that starts somewhere else

10

Some important terms to remember

* Virtual Memory
* Virtual Address
* Address Space

* And now onto some oldish virtual memory model
techniques...

2/8/2026 11

Old technique #1: Fixed partitions

* Physical memory is broken up into fixed partitions

— partitions may have different sizes, but partitioning never
changes

— hardware requirement: base register, limit register
» physical address = virtual address + base register
» base register loaded by OS when it switches to a process

— how do we provide protection?
« if (physical address > base + limit) then... ?
« Advantages
— Simple
* Problems

— internal fragmentation: the available partition is larger than
what was requested

— external fragmentation: two small partitions left, but one big
job — what sizes should the partitions be??

12

Mechanics of fixed partitions

offset

virtual address

v

partition O

partition 1

limit register base register
2K P2’s base: 6K
no
raise

protection fault

partition 2

partition 3

physical memory

0

2K

6K

8K

12K

13

Old technique #2: Variable partitions

« Obvious next step: physical memory is broken up into
partitions dynamically — partitions are tailored to programs
— hardware requirements: base register, limit register
— physical address = virtual address + base register

— how do we provide protection?
« if (physical address > base + limit) then... ?

« Advantages

— no internal fragmentation
« simply allocate partition size to be just big enough for process
(assuming we know what that is!)

 Problems

— external fragmentation

» as we load and unload jobs, holes are left scattered throughout
physical memory

« slightly different than the external fragmentation for fixed partition
systems
14

Mechanics of variable partitions

limit register

base register

P3’s size

P3’s base

v

offset —<<? yes
virtual address
no
raise

protection fault

physical memory

partition O

partition 1

partition 2

partition 3

partition 4

15

Dealing with fragmentation

« Compact memory by
copying

— Swap a program out

, , artition 0 artition 0
— Re-load it, adjacent to > >
another partition 1 partition 1
— Adjust its base register partition 2
— “Lather, rinse, repeat” RIS 2 > 2ol &
— Ugh e .
partition 3 partition 4

partition 4

16

Modern technique: Paging

Solve the external fragmentation problem by using fixed sized units
in both physical and virtual memory

Mitigate the internal fragmentation problem by making the units

small

virtual address space
physical address space

el frame O
e frame 1
PEER 2 frame 2
page 3

frame Y

page X

17

Life is easy ...

* For the programmer ...

— Processes view memory as a contiguous address space
from bytes 0 through N — a virtual address space

— N is independent of the actual hardware

— In reality, virtual pages are scattered across physical
memory frames — not contiguous as earlier

* Virtual-to-physical mapping
« This mapping is invisible to the program

* For the memory manager ...

— Efficient use of memory, because very little internal
fragmentation

— No external fragmentation at all

* No need to copy big chunks of memory around to coalesce free
space

18

* For the protection system

— One process cannot “name” another process’s memory —
there is complete isolation

« The virtual address OXxXDEADBEEF maps to different physical
addresses for different processes

Note: Assume for now that all pages of the address
space are resident in memory — no “page faults”

* But how do we accomplish this translation from a
virtual address to a physical address?

19

Address translation

To go from a virtual address to a physical address, we
add a level of indirection called a Page Table

Translating virtual addresses
— a virtual address has two parts: virtual page number & offset
— virtual page number (VPN) is an index into a page table
— page table entry contains page frame number (PFN)
— physical address is PFN::offset (concatenated together)

Page tables

— managed by the OS

— one page table entry (PTE) per page in virtual address space
* i.e., one PTE per VPN

— map virtual page number (VPN) to page frame number (PFN)
VPN is simply an index into the page table

20

process 0

process 1

page table
0 3
1 5
page table
0 7
1 5
2 -
3 1

Paging (K-byte pages)

virtual address space

0
page O
K
page 1 .. T~
2K AN >

virtual address space

0
page0 r-._

K b
page 1 s

2K /
page2 . .,/

3K Py
page 3 N,

4K R

-
-

-
-

,,,,, 3 page frame 5

physical memory

0
page frame 0

1K
4 page frame 1

4

J 2K
J/ page frame 2

Pt 3K

= page frame 3

4K

. page frame 4
oK

6K
page frame 6

- 7K

™3 page frame 7

8K
page frame 8

9K

page frame 9

10K
Page fault — next lecture!
21

Mechanics of address translation

virtual address

virtual page # | offset

physical memory

page
page table frame O
page
frame 1
page
frame 2
page
frame 3

physical address

page frame # —— | page frame # | offset —

v

page
frame Y

22

Example of address translation

Assume 32 bit addresses

— assume page size is 4KB (4096 bytes, or 22 bytes)
— VPN is 20 bits long (22° VPNSs), offset is 12 bits long

Let’s translate virtual address 0x 328

— VPN is Ox , and offset is 0x328

— assume page table entry Ox contains value 0x03004
» page frame number is 0x03004
* VPN 0x maps to PFN 0x03004

— physical address = PFN::offset = 0x03004328

23

Translating Ox 328

virtual address

0x328

X physical memory

Page# page
page table frame O

l page
< frame 1

hysical address
phy page

0x03004 [—— 0x03004 0x328 7; frame 2
0x03004328 page

frame 3

Frame# Offset

page
frame Y

24

Page Table Entries — an opportunity!

* As long as there’s a PTE lookup per memory
reference, we might as well add some functionality
— We can add protection

A virtual page can be read-only, and result in a fault if a store to
it is attempted

« Some pages may not map to anything — a fault will occur if a
reference is attempted

« What other type of protection would be good?
Maybe execute-only?

— We can add some “accounting information”

« Can’t do anything fancy, since address translation must be fast

« Can keep track of whether or not a virtual page is being used,
though

— This will help the paging algorithm, once we get to paging

25

Generic Page Table Entry (PTE)

1 1 1 2 20
VIR[M| prot page frame number

PTE’s control mapping (a generic/stylized version)

— the valid bit says whether or not the PTE can be used
 says whether or not a virtual address is valid
* it is checked each time a virtual address is used
— the referenced bit says whether the page has been accessed
* it is set when a page has been read or written to
— the modified bit says whether or not the page is dirty
* it is set when a write to the page has occurred
— the protection bits control which operations are allowed
* read, write, execute
— the page frame number determines the physical page

» physical page start address = PFN
26

Paging advantages

Easy to allocate physical memory

— physical memory is allocated from free list of frames
 to allocate a frame, just remove it from the free list

— external fragmentation is not a problem

* managing variable-sized allocations is a huge pain in the neck
— “buddy system”

Leads naturally to virtual memory

— entire program need not be memory resident
— take page faults using “valid” bit

— all “chunks” are the same size (page size)

— but paging was originally introduced to deal with external
fragmentation, not to allow programs to be partially resident
(here is the subtle distinction between virtual addressing and
virtual memory)

27

Paging disadvantages

Can still have internal fragmentation
— Process may not use memory in exact multiples of pages
— But minor because of small page size relative to address space
size
Memory reference overhead
— 2 references per address lookup (page table, then memory)
— Solution: use a hardware cache to absorb page table lookups
 translation lookaside buffer (TLB) — next class
Memory required to hold page tables can be large
— need one PTE per page in virtual address space
— 32 bit AS with 4KB pages = 220 PTEs = 1,048,576 PTEs

— 4 bytes/PTE = 4MB per page table
« OS’s have separate page tables per process
« 25 processes = 100MB of page tables

— Solution: page the page tables (!!!)
* (ow, my brain hurts...more later)

28

Segmentation
(We will be back to paging soon!)

* Paging

— mitigates various memory allocation complexities (e.g.,
fragmentation)

— view an address space as a linear array of bytes

— divide it into pages of equal size (e.g., 4KB)

— use a page table to map virtual pages to physical page
frames

» page (logical) => page frame (physical)

— One problem with paging is that is not very logical (i.e.,

programmer friendly)

« Segmentation

— partition an address space into logical units
» stack, code, heap, subroutines, ...

— a virtual address is <segment #, offset>

29

What's the point?

* More “logical”

— absent segmentation, a linker takes a bunch of independent
modules that call each other and linearizes them

— they are really independent; segmentation treats them as
such

» Facilitates sharing and reuse

— a segment is a natural unit of sharing — a subroutine or
function

* A natural extension of variable-sized partitions
— variable-sized partition = 1 segment/process
— segmentation = many segments/process

30

Hardware support

« Segment table
— multiple base/limit pairs, one per segment

— segments named by segment #, used as index into table
 avirtual address is <segment #, offset>

— offset of virtual address added to base address of segment
to yield physical address

31

Segment lookups

segment table

physical memory

limit base
f segment 0

segment # offset

v

virtual address segment 1

segment 2
I
DI g @ > | segment 3
Looks like a repeat of no
variable partitions with a
small twist the base limit raise
registers are now ina protection fault segment 4

segment table

Pros and cons

* Yes, it's “logical” and it facilitates sharing and reuse

« But it has all the horror of a variable partition system

— except that linking is simpler, and the “chunks” that must be
allocated are smaller than a “typical” linear address space

« What to do?

33

Combining segmentation and paging

« (Can combine these techniques
— modern architectures support both segments and paging

* Use segments to manage logical units
— segments vary in size, but are typically large (multiple pages)

« Use pages to partition segments into fixed-size chunks

— each segment has its own page table

» there is a page table per segment, rather than per user address
space

— memory allocation becomes easy once again
* no contiguous allocation, no external fragmentation

Segment # Page # Offset within page

N— _
—

Offset within segment

34

How Intel combines segments and pages

2/8/2026

LOGICAL ADDRESS
15 0 31 [

SELECTOR OFFSET

DESCRIPTOR TABLE

SEGMENT
pEScRIPTOR [| + |

LINEAR ADDRESS (4K PAGE)

Lo_-n_l-—)l DIR l TABLE | OFFSET I 4K PAGE FRAME
————I L———} OPERAND

PAGE TABLE

PAGE DIRECTORY

PG TBLENTRY |

13| 4KDIRENTRY [—

4M PAGE FRAME
—> | 4M DIR ENTRY
N,
> | OPERAND
CR3
1
—)I DIR l OFFSET |

LINEAR ADDRESS (4M PAGE)
APMSO

Figure 11-16. Combined Segment and Page Address Translation

35

Mixing segments and pages

PAGE FRAMES

LDT PAGE DIRECTORY PAGE TABLES

PTE

PTE

P PTE
DESCRIPTOR PDE

>
DESCRPTOR |—>»| PDE |

PTE
} PTE
LDT PAGE DIRECTORY PAGE TABLES

V.V VvV v

PAGE FRAMES

APMI2

2/8/2026

Figure 11-17. Each Segment Can Have lts Own Page Table

36

e Linux:
— 1 kernel code segment, 1 kernel data segment
— 1 user code segment, 1 user data segment
— all of these segments are paged

* Note: this is a very limited/boring use of segments!

37

